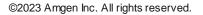
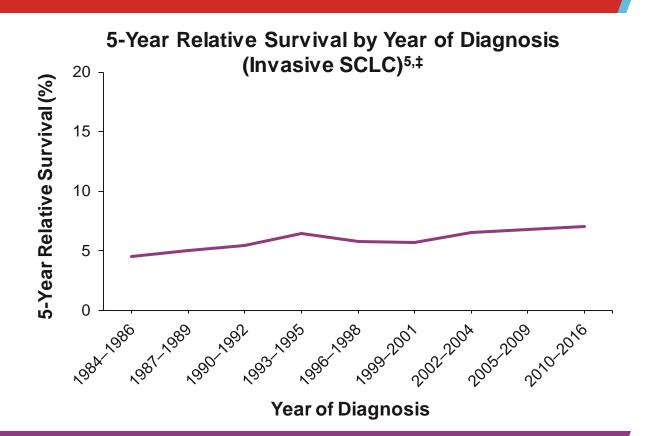

DLL3-TARGETED IMMUNOTHERAPY: HARNESSING THE POTENTIAL OF T CELLS TO FIGHT SMALL CELL LUNG CANCER (SCLC)



©2023 Amgen Inc. All rights reserved. USA-OCF-82104 2/23

- Discuss the disease burden and unmet need in patients with SCLC
- Provide an overview of T-cell engagers, including BiTE[®] molecules
- Describe the potential of delta-like ligand 3 (DLL3) as a target for BiTE[®] immunotherapy in SCLC

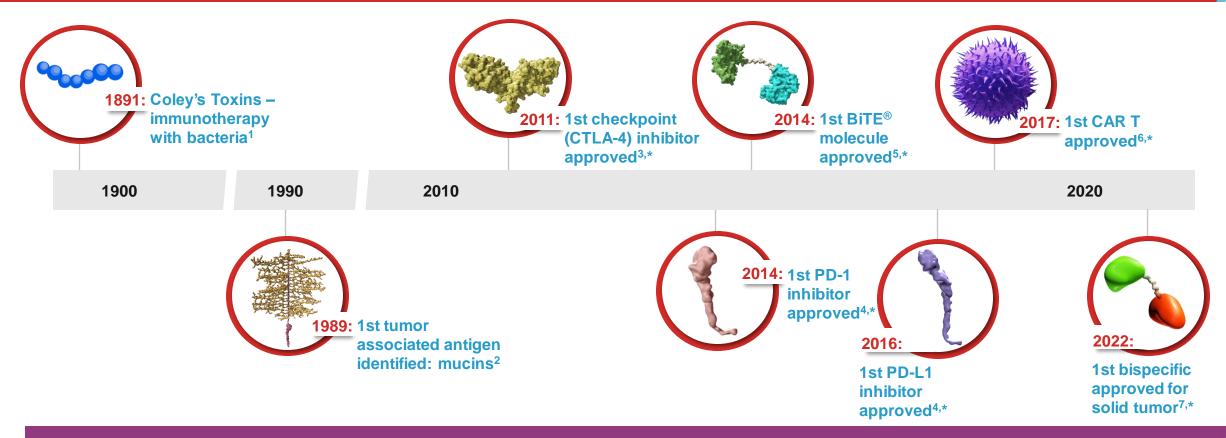


2

AMG

SCLC IS AN AGGRESSIVE CANCER ASSOCIATED WITH POOR OUTCOMES

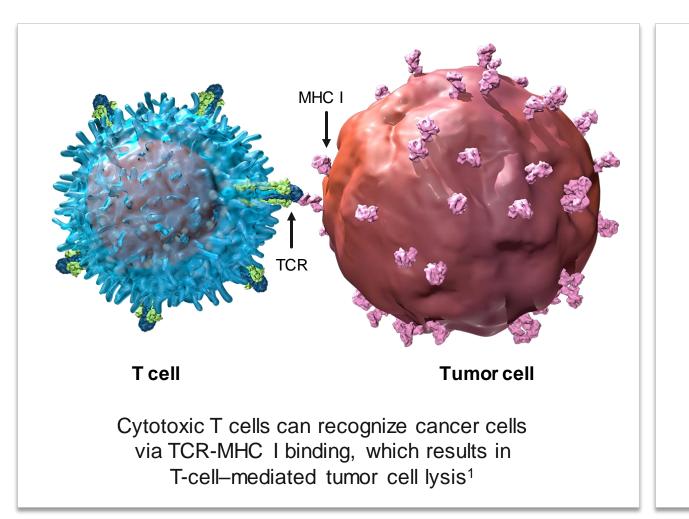
- SCLC is an aggressive disease with rapid growth and early metastases¹
- It is estimated that there will be ~ 30,000 new cases of SCLC in the US in 2023²
- Approximately two-thirds of patients with SCLC are diagnosed with extensive-stage disease¹
- While SCLC is usually sensitive to initial treatment, many patients can progress within months^{3,4}
- ES-SCLC is associated with a median survival of 10–13 months^{3,4,*,†}
- SCLC has a high rate of molecular alterations, yet there are currently no actionable biomarkers¹

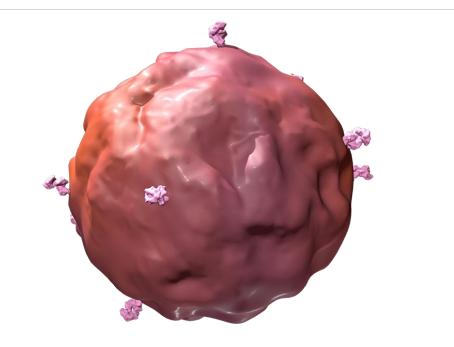


THERE REMAINS A HIGH UNMET NEED FOR PATIENTS WITH SCLC¹

*Based on a phase 3, randomized, open-label trial demonstrating median OS of 13.0 months for anti–PD-L1 therapy plus platinum-based chemotherapy (n=268) versus 10.3 months for platinum-based chemotherapy alone (n=269) as first-line therapy in patients with ES-SCLC enrolled between March 27, 2017 and May 29, 2018.³ [†]Based on a phase 3, randomized, double-blind trial demonstrating median OS of 12.3 months for anti–PD-L1 therapy plus platinum-based chemotherapy alone (n=202) as first-line therapy in patients with ES-SCLC enrolled between June 6, 2016 and May 31, 2017.⁴ [‡]Based on SEER 9 in patients with invasive small cell cancer of the lung and bronchus.⁵ ES-SCLC, extensive-stage small cell lung cancer; OS, overall survival; PD-L1, programmed cell death ligand 1; SCLC, small cell lung cancer; SEER, Surveillance, Epidemiology, and End Results. 1. Sabari JK, et al. *Nat Rev Clin Oncol.* 2017;14:549-561. **2**. American Cancer Society. www.cancer.org. Accessed February 14, 2023. **3**. Paz-Ares L, et al. *Lancet.* 2019;394:1929-1939. **4**. Horn L, et al. *N Engl J Med.* 2018;379:2220-2229. **5**. National Cancer Institute. www.cancer.org. Accessed February 14, 2023.

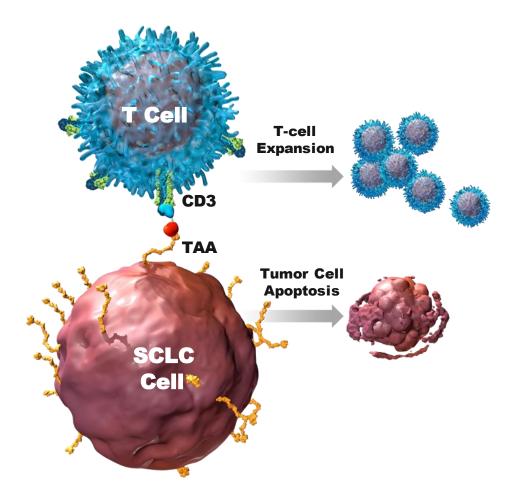
OVER THE LAST FEW DECADES, THERE HAS BEEN SIGNIFICANT INNOVATION IN CANCER IMMUNOTHERAPY


IMMUNOTHERAPIES, THROUGH DIFFERENT MECHANISMS, ARE DESIGNED TO HARNESS THE PATIENT'S IMMUNE SYSTEM TO TARGET AND ELIMINATE TUMOR CELLS⁸


*Represents accelerated or full FDA approval dates.3-7

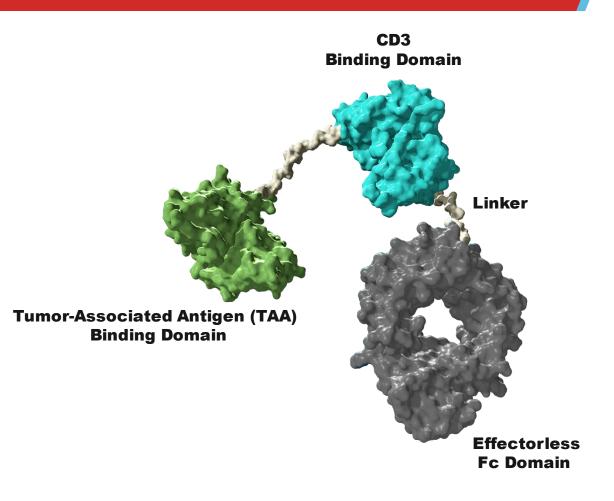
BiTE, Bispecific T-cell Engager; CAR T, chimeric antigen receptor T cell; CTLA-4, cy totoxic T-ly mphocy te-associated protein 4; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1. **1.** American Association for Cancer Research. www.aacr.org. Accessed February 15, 2023. **2.** Barnd DL, et al. *Proc Natl Acad Sci U S A*. 1989;86:7159-7163. **3.** Cancer Research Institute. www.cancerresearch.org. Accessed February 15, 2023. **4.** Cancer Research Institute. www.cancerresearch.org. Accessed February 14, 2023. **5.** Einsele H, et al. *Cancer*. 2020;126:3192-3201. **6.** Food and Drug Administration. www.fda.gov. Accessed February 17, 2023. **7.** Food and Drug Administration. www.fda.gov. Accessed February 17, 2023. **8.** Waldman AD, et al. *Nat Rev Immunol.* 2020;20:651-668.

CYTOTOXIC T CELLS PLAY AN IMPORTANT ROLE IN RECOGNIZING AND ELIMINATING TUMOR CELLS



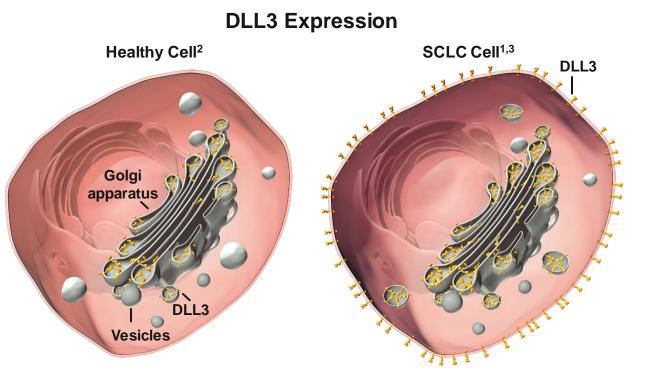
Tumors can evade immune detection by downregulating MHC I and through an immunosuppressive tumor microenvironment²

T-CELL ENGAGERS ARE DESIGNED TO REDIRECT CYTOTOXIC T CELLS TO TARGET AND KILL TUMOR CELLS


- T-cell engager molecules are designed to bind both a tumor-associated antigen (TAA) on tumor cells and CD3 on T cells¹
- They are designed to create an immunological synapse between T cells and tumor cells, and can activate T cells without relying on normal TCR/MHC I recognition^{2,3}
- Activated T cells:
 - Create perforin pores in the tumor cell membrane, allowing for the transfer of granzymes, which may induce apoptosis³
 - Proliferate, resulting in expansion of T cells to facilitate additional T-cell–dependent killing³

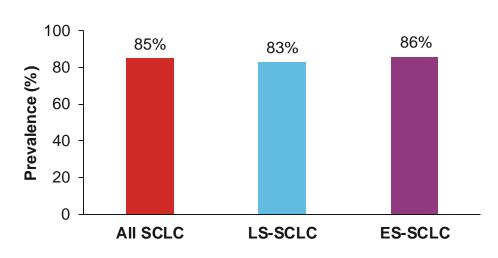
CD, cluster of differentiation; MHC I, major histocompatibility class I; SCLC, small cell lung cancer; TCR, T-cell receptor. **1.** Baeuerle PA, et al. *Curr Opin Mol Ther*. 2009;11:22-30. **2.** Yuraszeck T, et al. *Clin Pharmacol Ther*. 2017;101:634-645. **3.** Nagorsen D, et al. *Exp Cell Res*. 2011;317:1255-1260.

BITE® (BISPECIFIC T-CELL ENGAGER) TECHNOLOGY


- BiTE[®] technology is a clinically validated T-cell engager platform¹
 - The first BiTE[®] molecule was approved in 2014¹
 - BiTE[®] molecules targeting different tumor-associated antigens are being investigated in hematologic and solid tumor malignancies¹
- The BiTE[®] molecule consists of two scFv domains that bind a cell surface antigen on tumor cells and CD3 on T cells, with a silenced Fc domain for extended half-life^{2,3}

DELTA-LIKE LIGAND 3 (DLL3) IS EXPRESSED ON THE CELL SURFACE OF SCLC AND RARELY ON NORMAL CELLS

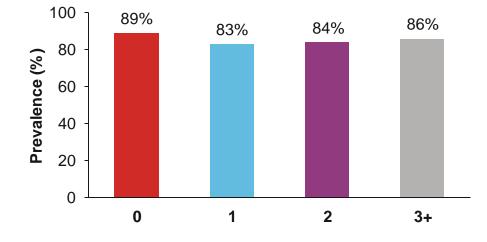
- DLL3 is an inhibitory protein of Notch signaling, a pathway that is involved in embryonic development and neuroendocrine cell differentiation¹
- In healthy cells, DLL3 is typically located in the Golgi apparatus and cytoplasmic vesicles, and is rarely found on the cellular surface²
- In high-grade neuroendocrine tumors, including SCLC, DLL3 is expressed on the cell surface¹
 - ~ 85% of patients with SCLC have cell surface expression of DLL3^{3,*}


DLL3 IS A TUMOR-ASSOCIATED ANTIGEN AND A POTENTIAL TARGET FOR BITE® IMMUNOTHERAPY

*Based on a multicenter, international, noninterventional study of 1,050 patients with 1 specimen and evaluable DLL3 expression. DLL3 positivity was based on immunohistochemistry staining with 25% of tumor cells that expressed DLL3. DLL3 staining defined as present if tumor cells show ed punctate and/or diffuse cytoplasmic and/or partial or circumferential membranous staining.³

BiTE, Bispecific T-cell Engager; SCLC, small cell lung cancer.

1. Sabari JK, et al. Nat Rev Clin Oncol. 2017;14:549-561. 2. Leonetti A, et al. Cell Oncol (Dordr). 2019;42:261-273. 3. Rojo F, et al. Lung Cancer. 2020;147:237-243.


DLL3 IS EXPRESSED ON THE SURFACE OF MOST SCLC TUMORS

Prevalence of DLL3 Expression

in Patients With SCLC*

Prevalence of DLL3 Expression Across SCLC Lines of Therapy*

- A large, multicenter study found that 85% of patients with SCLC (n=895/1,050) had ≥ 25% tumor cells that expressed DLL3 by immunohistochemistry
- The proportion of patients that expressed DLL3 remained consistently high (≥ 83%) across disease stage and lines of therapy in patients with SCLC

*Based on a multicenter, international, noninterventional study of 1,050 patients with 1 specimen and evaluable DLL3 expression. DLL3 positivity was based on immunohistochemistry staining with ≥ 25% of tumor cells that expressed DLL3. DLL3 staining defined as present if tumor cells show ed punctate and/or diffuse cytoplasmic and/or partial or circumferential membranous staining. DLL3, delta-like ligand 3; ES-SCLC, extensive-stage small cell lung cancer; LS-SCLC, limited-stage small cell lung cancer; SCLC, small cell lung cancer. Rojo F, et al. *Lung Cancer*. 2020;147:237-243.

SUMMARY

BiTE, Bispecific T-cell Engager; DLL3, delta-like ligand 3; SCLC, small cell lung cancer. **1.** Rudin CM, et al. *Nat Rev Dis Primers*. 2021;7:3. **2.** Yuraszeck T, et al. *Clin Pharmacol Ther*. 2017;101:634-645. **3.** Leonetti A, et al. *Cell Oncol (Dordr)*. 2019;42:261-273.